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VON NEUMANN MACHINE
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Key Realizations Which We Take
for Granted JPL

« Importance of digital regeneration

— Transition from analog to digital after proof that a bit
could be regenerated nearly an infinite number of
times without loss of information.”

* Importance of timing control

— The ability to control the timing of information
introduction into the processing loop (i.e. Buffered
storage and long term memory devices)

* J.H. Wilkinson, “Rounding Errors in algebraic Processes” (Prentice hall,
Englewood Cliffs, N.J. 1963) Chapt. 1, pp 1-33.
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System Implications of Physical
Properties JPL

* Fermions - intrinsically serial architectures

— Radiative crosstalk limits interconnection packing
density

— Low active device switching powers
— Low cost due from mature technology

 Bosons - intrinsically parallel architectures
— Optical crosstalk is minimal up to point of detection
» High interconnect packing density
» Wavelength division multiplexing possible

— Switching based on 2nd and 3rd order effects => need
high optical intensity

— Relatively higher cost except for passive classical
optics components
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Digital Electronic Multi Level Machine
_JPL
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Physical Electronic Building Blocks
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Physical Optical Building Blocks

SPL
Passive Devices Active Devices
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Optical Schematics Rarely Expressed
Functionally in a Systems Context JPL

White Light holography
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Need to Introduce Functional Descriptions as an Analysis Aid
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Functional Block Diagram of
White Light Holography JPL
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FUNCTIONAL OPTICAL BUILDING BLOCKS

JPL
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Key Realizations JPL

 Regeneration

— All optical regenerator/amplifier differs from
electronic regenerator. Amplification adds noise so
that infinite numbers of regeneration not possible.*

 Timing control

— The ability to control the timing of the introduction of
information into the processing loop possible;
architecture may not be optimal for photons.

* Logic Gates

— All optical realizations of these functions are bulky,
power hungry, and difficult to integrate.

* J.H. Wilkinson, “Rounding Errors in algebraic Processes” (Prentice hall,
Englewood Cliffs, N.J. 1963) Chapt. 1, pp 1-33.
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Basic Requirements for Quantum
Computing Implementation  ym=

DiVincenzo’s determinations [2000]

1. Scalable physical system; i.e. 2" dimensional
complex vector from n-qubits

2. Ability to initialize qubits in simple fiducial state;
e.g. |000...>

3. Decoherence time > gate operation time
4. Universal set of quantum gates
5. Qubit specific measurement capability

* Need to add some form of timing control.

Ref: arXiv:quant-ph/0002077 (April 2000)
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Requirements for Quantum Communications

_JPL

—

Communications applications

— Secret key distribution

— Multi party functions
» Appointment scheduling
» Secret sharing
» Game playing

DiVincenzo’s determinations [2000]

6. Ability to interconvert stationary and flying qubits.

7. Ability to faithfully transmit flying qubits between
specified locations.

Ref: arXiv:quant-ph/0002077 (April 2000)
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Quantum Computing Building Blocks
Pl

Devices

Hyper parametric entangled photon generator
Single photon detectors

Quasi single photon generators

MOTs

Slow light atomic traps [SLATs] (BEC, atomic vapor,
rare earth dopants)

Functions

Hyper parametric single photon counters
Slow light trap buffer storage
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DiVincenzo’s fifth requirement: Qubit specific
measurement capability

JPL
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What happens when one inputs a time ordered

sequence of single photons?

SPL

Legend
Atomic states

Input Photon States
Output Photon States

Dressed state

Hot Rb gas

[n;>4In>,... N>y

r<<N

—

[1>,]0>,]0>;[1>,... [n >,

In4>4[Ny>,N3>5I04>,... N>, 272

—
[1>4]0>,]0>3]1>,... [n>,
Rb gas density
cell length

Beam waist?

Asp = photon wavelength
R = Laser rep rate =
Vg, = group velocity =

A = Photon spacing = v, /R

r = # entangled photons

= 10" cm?,
= 4 cm
= 0.1cm
= 800 nm
8 MHz
1000 m/s
= 125 um (125 ps)
= Asp/A=0.8

Does the output sequence maintain the same order?
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Scaling up to n-entangled states?

JPL
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CAN ONE DEFINE GATE FUNCTIONS
SPL

What happens when one mixes the states through the application
of microwave, electric, or magnetic fields?

Legend
Atomic states
Input Photon States Dressed state
Output Photon States Hot Rb gas
Entangled states
In>4In>,... INg>y r<N
—— 1 xata ket —
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How does one deal with the fact that we don’t know an exact value for N?
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Key Realizations JPL

* Regeneration
— Not a useful function for qubit operations.

* Timing control

— The ability to control the timing of the introduction of
information into the processing gate not well
formulated.

* Logic Gates

— Basic set of useful gates identified. Gate devices not
yet realized.
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